Copied to
clipboard

G = C20.72C24order 320 = 26·5

19th non-split extension by C20 of C24 acting via C24/C23=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.72C24, C40.49C23, M4(2)⋊28D10, C8○D48D5, (C2×C8)⋊23D10, (D4×D5).1C4, (Q8×D5).1C4, D4.13(C4×D5), Q8.14(C4×D5), (C2×C40)⋊26C22, C4○D4.43D10, D20.35(C2×C4), D42D5.1C4, (C8×D5)⋊12C22, C55(Q8○M4(2)), D4.Dic58C2, Q82D5.1C4, C8.56(C22×D5), C4.71(C23×D5), C8⋊D522C22, (D5×M4(2))⋊11C2, C20.74(C22×C4), C10.56(C23×C4), C52C8.33C23, (C4×D5).73C23, D20.2C413C2, D20.3C417C2, (C2×C20).514C23, Dic10.37(C2×C4), C4○D20.52C22, D10.25(C22×C4), C4.Dic527C22, (C5×M4(2))⋊28C22, Dic5.24(C22×C4), C4.39(C2×C4×D5), (C5×C8○D4)⋊9C2, C22.5(C2×C4×D5), (D5×C4○D4).3C2, C5⋊D4.6(C2×C4), (C2×C8⋊D5)⋊28C2, C2.36(D5×C22×C4), (C4×D5).11(C2×C4), (C5×D4).31(C2×C4), (C5×Q8).33(C2×C4), (C2×C52C8)⋊13C22, (C2×C4×D5).163C22, (C2×C10).12(C22×C4), (C2×Dic5).40(C2×C4), (C5×C4○D4).44C22, (C22×D5).33(C2×C4), (C2×C4).607(C22×D5), SmallGroup(320,1422)

Series: Derived Chief Lower central Upper central

C1C10 — C20.72C24
C1C5C10C20C4×D5C2×C4×D5D5×C4○D4 — C20.72C24
C5C10 — C20.72C24
C1C4C8○D4

Generators and relations for C20.72C24
 G = < a,b,c,d | a40=b2=c2=d2=1, bab=a29, cac=a21, ad=da, bc=cb, bd=db, dcd=a20c >

Subgroups: 734 in 258 conjugacy classes, 147 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, D10, D10, C2×C10, C2×M4(2), C8○D4, C8○D4, C2×C4○D4, C52C8, C52C8, C40, C40, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×Q8, C22×D5, Q8○M4(2), C8×D5, C8⋊D5, C8⋊D5, C2×C52C8, C4.Dic5, C2×C40, C5×M4(2), C2×C4×D5, C4○D20, D4×D5, D42D5, Q8×D5, Q82D5, C5×C4○D4, C2×C8⋊D5, D20.3C4, D5×M4(2), D20.2C4, D4.Dic5, C5×C8○D4, D5×C4○D4, C20.72C24
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C24, D10, C23×C4, C4×D5, C22×D5, Q8○M4(2), C2×C4×D5, C23×D5, D5×C22×C4, C20.72C24

Smallest permutation representation of C20.72C24
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 30)(3 19)(4 8)(5 37)(6 26)(7 15)(9 33)(10 22)(12 40)(13 29)(14 18)(16 36)(17 25)(20 32)(23 39)(24 28)(27 35)(34 38)(41 73)(42 62)(43 51)(44 80)(45 69)(46 58)(48 76)(49 65)(50 54)(52 72)(53 61)(55 79)(56 68)(59 75)(60 64)(63 71)(66 78)(70 74)
(1 67)(2 48)(3 69)(4 50)(5 71)(6 52)(7 73)(8 54)(9 75)(10 56)(11 77)(12 58)(13 79)(14 60)(15 41)(16 62)(17 43)(18 64)(19 45)(20 66)(21 47)(22 68)(23 49)(24 70)(25 51)(26 72)(27 53)(28 74)(29 55)(30 76)(31 57)(32 78)(33 59)(34 80)(35 61)(36 42)(37 63)(38 44)(39 65)(40 46)
(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,30)(3,19)(4,8)(5,37)(6,26)(7,15)(9,33)(10,22)(12,40)(13,29)(14,18)(16,36)(17,25)(20,32)(23,39)(24,28)(27,35)(34,38)(41,73)(42,62)(43,51)(44,80)(45,69)(46,58)(48,76)(49,65)(50,54)(52,72)(53,61)(55,79)(56,68)(59,75)(60,64)(63,71)(66,78)(70,74), (1,67)(2,48)(3,69)(4,50)(5,71)(6,52)(7,73)(8,54)(9,75)(10,56)(11,77)(12,58)(13,79)(14,60)(15,41)(16,62)(17,43)(18,64)(19,45)(20,66)(21,47)(22,68)(23,49)(24,70)(25,51)(26,72)(27,53)(28,74)(29,55)(30,76)(31,57)(32,78)(33,59)(34,80)(35,61)(36,42)(37,63)(38,44)(39,65)(40,46), (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,30)(3,19)(4,8)(5,37)(6,26)(7,15)(9,33)(10,22)(12,40)(13,29)(14,18)(16,36)(17,25)(20,32)(23,39)(24,28)(27,35)(34,38)(41,73)(42,62)(43,51)(44,80)(45,69)(46,58)(48,76)(49,65)(50,54)(52,72)(53,61)(55,79)(56,68)(59,75)(60,64)(63,71)(66,78)(70,74), (1,67)(2,48)(3,69)(4,50)(5,71)(6,52)(7,73)(8,54)(9,75)(10,56)(11,77)(12,58)(13,79)(14,60)(15,41)(16,62)(17,43)(18,64)(19,45)(20,66)(21,47)(22,68)(23,49)(24,70)(25,51)(26,72)(27,53)(28,74)(29,55)(30,76)(31,57)(32,78)(33,59)(34,80)(35,61)(36,42)(37,63)(38,44)(39,65)(40,46), (41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,30),(3,19),(4,8),(5,37),(6,26),(7,15),(9,33),(10,22),(12,40),(13,29),(14,18),(16,36),(17,25),(20,32),(23,39),(24,28),(27,35),(34,38),(41,73),(42,62),(43,51),(44,80),(45,69),(46,58),(48,76),(49,65),(50,54),(52,72),(53,61),(55,79),(56,68),(59,75),(60,64),(63,71),(66,78),(70,74)], [(1,67),(2,48),(3,69),(4,50),(5,71),(6,52),(7,73),(8,54),(9,75),(10,56),(11,77),(12,58),(13,79),(14,60),(15,41),(16,62),(17,43),(18,64),(19,45),(20,66),(21,47),(22,68),(23,49),(24,70),(25,51),(26,72),(27,53),(28,74),(29,55),(30,76),(31,57),(32,78),(33,59),(34,80),(35,61),(36,42),(37,63),(38,44),(39,65),(40,46)], [(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)]])

74 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B8A···8H8I···8P10A10B10C···10H20A20B20C20D20E···20J40A···40H40I···40T
order122222222444444444558···88···8101010···102020202020···2040···4040···40
size11222101010101122210101010222···210···10224···422224···42···24···4

74 irreducible representations

dim11111111111122222244
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D5D10D10D10C4×D5C4×D5Q8○M4(2)C20.72C24
kernelC20.72C24C2×C8⋊D5D20.3C4D5×M4(2)D20.2C4D4.Dic5C5×C8○D4D5×C4○D4D4×D5D42D5Q8×D5Q82D5C8○D4C2×C8M4(2)C4○D4D4Q8C5C1
# reps133331116622266212428

Matrix representation of C20.72C24 in GL6(𝔽41)

6350000
610000
0003900
0025000
00400402
002040361
,
3560000
160000
001000
0004000
000010
0010140
,
4000000
0400000
000010
00200201
001000
00211210
,
4000000
0400000
001000
000100
0000400
0010040

G:=sub<GL(6,GF(41))| [6,6,0,0,0,0,35,1,0,0,0,0,0,0,0,25,40,20,0,0,39,0,0,40,0,0,0,0,40,36,0,0,0,0,2,1],[35,1,0,0,0,0,6,6,0,0,0,0,0,0,1,0,0,1,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,20,1,21,0,0,0,0,0,1,0,0,1,20,0,21,0,0,0,1,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;

C20.72C24 in GAP, Magma, Sage, TeX

C_{20}._{72}C_2^4
% in TeX

G:=Group("C20.72C2^4");
// GroupNames label

G:=SmallGroup(320,1422);
// by ID

G=gap.SmallGroup(320,1422);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,387,1123,80,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^40=b^2=c^2=d^2=1,b*a*b=a^29,c*a*c=a^21,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^20*c>;
// generators/relations

׿
×
𝔽